26부탁) 생명과학I 출제 요소 예측
게시글 주소: https://www.orbi.kr/00059362321
개인적인 생각이고 아니다 싶으면 무시하세요
그냥 기출문제 쭉 깔아놓고 보다가 떠오른 생각들이에요
1) 근수축 G유형 (G=그래프)
이번 년도 6,9평 모두 처음보는 근수축 문제의 등장이 있었습니다
제가 생각하기에 이는 22년도 수능으로 인해서 너무나도 올라가버린 생명과학I의 난이도를 조절하기 위한 평가원의 하나의 전략이라고 생각하는데요
'자료 해석형 문항'을 출제하여, 지구과학과 같이 과도한 논리나 스킬이 필요하지 않은 문항으로도 난이도를 조절하기 위한 장치라고 생각합니다
9평의 PCR문항 역시 일맥상통한다고 생각하고요
본론으로 돌아와서, 근수축 G유형은 9평처럼 G를 제시하는 유형뿐만 아니라 180713과 같이 '시간에 따른 구간 크기의 변화율', '어느 구간의 변화에 따른 다른 구간의 변화율'을 기울기로 하여 G를 그려서 문제를 풀도록 하는 유형을 말합니다
그러니, 9평이나 180713처럼 G가 제시되지 않더라도 충분히 G로 해석하면 이득을 보도록 하는 문제를 출제할 가능성이 높다고 생각합니다
서바에도 출제된 적 있어서, 그 때 개꿀 빨았어요!
물론, G로 해석하지 않아도 문제는 풀 수 있지만 G로 접근하면 많은 시간적 이익을 볼 수 있습니다
강기원t가 수학문제를 풀 때 'G로 접근해야지 모순인 경우를 계산 없이도 알 수 있다'고 항상 말씀하시는데, 이 유형도 마찬가지입니다
G의 기울기에 대한 해석을 근거로 계산 없이도 바로 모순인 경우를 거를 수 있는 특징이 있죠
이 부분에 대해서 저는 '주어진 문제상황을 G로 이해하는 방법', 'G해석을 위한 스킬' 등을 따로 만드어서 대비를 해두었지만, 시중에 다른 강사분들은 딱히 방법론을 준비하시지 않으신거 같더라고요
물론, '유전의 세포들 - 근수축편'에서는 방법론을 제시하시긴 하셨지만 개인적으로는 명쾌하게 바로 와닿지는 않는다고 생각해요
(비방 아니에요!! 유전의 세포들에 실린 방법도 충분히 좋고 저도 여러가지 배워갈 점이 있다고 생각했지만, 개인적으로는 완벽하게 일반화되어서 누구나 쓸 수 있는 방법은 아니라고 생각해요)
수능에 출제되서 내년에 과외할 때 꼭 가르치고 싶네요!
2) 멘델 추론
작년 6,9평 모두 다인자가 출제되었지만, 수능에는 결국 출제되지 않았습니다
수능에는 뜬금없이 멘델추론 문항이 출제되었죠
그런데, 갑자기 멘델이 출제 될 리는 없잖아요?
'2206평 다인자의 3/8 - 22수능 멘델추론의 3/8'은 어떤 관계가 있을거라고 생각했고, 저는 '확률해석'이라는 것에 평가원이 집중하려고 한다고 생각해요
평가원은 '파스칼 삼각형'이라는 도구에 의해서 비교적 쉽게 풀리는 다인자를 미리 6평에 출제함으로서 학생들이 '확률해석'에 집중하도록 하고, 수능에서는 더욱 난이도를 높여서 멘델추론 문항을 냈다고 생각해요
또한, 이번 9평에도 쉬운 난이도이긴 하지만 멘델 추론 문항이 출제되었어요
저는 작년 수능과 유사하게 '2연관 1독립의 멘델추론'이 출제될 거라고 생각하고, 이번에는 확률이 아닌 9평과 유사한 표현형 가짓수 해석을 물어볼 거라고 생각해요
표현형 가짓수 해석 역시 확률해석과 어느정도 일맥상통하는 부분이 있어서(수준t 수업 들어보신 분들은 어떤 말인지 아실거에요!) 충분히 출제 가능성이 높다고 생각해요
첨언 : 221116에 대한 가장 일반적이고 완벽한 스킬은 DOGE님이 만드셨으니, 궁금하면 과외ㄱㄱ
3) 다인자의 미출제
다인자는 아무리 봐도 수능에 안 나올거 같아요
이번 6,9평에도 출제 안 됐고, 앞으로도 안나올 거 같아요
저는 '6평 어려움 -> 9평 쉬움 -> 수능 출제X'와 '6평 쉬움 -> 9평 어려움 -> 수능 출제'의 규칙이 있다고 생각하는데, 작년 다인자는 딱 전자의 예시에요
6평은 연관다인자, 9평은 독립다인자로 난이도가 확 내려갔으니까요
그래서 위에서도 말했듣이 다인자는 단순히 '확률해석'의 예고를 위한 수단이었을 뿐, 목적이 아니라고 생각해요
글고, 다인자 가계도도 절대 안나올 거 같아요
아래서 말할 세포분열 킬러 + 평범한 가계도로 킬러 나올거 같아요
사설에서 17번 다인자 가계도 거의 고정인데 안나올거 같은데 계속 풀어서 너무 빡쳐요!
4) 세포분열 돌연변이 - 전좌
2106평에 유전자 돌연변이가 처음 출제 되었고, 21수능에 유전자 돌연변이가 출제되었습니다
2206평에 결실 돌연변이가 처음 출제되었고, 22수능에 결실 돌연변이가 출제되었고요
그리고, 올해 9평에 전좌 돌연변이가 처음 출제되었고, 아마도 올해 수능에 나올 것이라고 예상합니다
(사진은 너무 많아서 PASS)
평가원은 염색체 구조이상 돌연변이가 교육과정에 들어온 이후로 꽤나 중요하게 여기고 있다고 생각합니다
또한, '6평 어려움 -> 9평 쉬움 -> 수능 출제X'와 '6평 쉬움 -> 9평 어려움 -> 수능 출제'의 규칙에 의거해서 수능에 나올거라고 생각해요
올해 세포분열 문항들 생각해보면 아실거에요
머 이정도 생각하고 있고요. 그냥 개인적인 생각이라서, 아니다 싶으시면 그냥 무시해 주세요!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
13일은 좀 6
;;;
-
커즈아아아아 3
-
왜 시대는 수능 3일전에 월례를보는거지.. 직전에 감 끌어올리면 오히려 좋은건가...
-
하지만 난 대구광역시교육청에서 주관하는 모의고사를 친다 쿠후후
-
??
-
23 24 전부 수능에서 한 7~8점정도 높네 ㄷㄷ
-
오예스로 바꾸니까 녹는다.. 비싼 이유가 있네
-
간쓸개 이감 세트 시즌 5-4 까지 밖에 못했는데 시간이 너무 없네요 ㅠㅠㅠ 남은게...
-
보이루 0
다들보이루 이제 11월이네요 힘냅시다
-
안치면 후회하려나
-
더프 신청했으면 일요일날 롤드컵 보느라 5시간도 못자고 쳤겠네
-
괜시리 좀 쫄리네요 이번수능 = 병무청이랑 맞다이라서 최근 3년간 중에 리스크가...
-
김민주단들 화이팅!
-
☆☆ 대성 19패스 phil0413 추천 부탁드려요 ㅠㅠ 메가커피 1만원권 같이 받아요! 0
추천 아이디 입력하면 메가커피 1만원권 같이 받을 수 있대요 !! 함께 2026...
-
기다려라 E퀄아 형이 찢어줄게
-
어제 ㄹㅇ 힘들었다
-
결국 승리할 자 2
오늘도 파이팅.
-
파운데이션 -> 킥오프-> 뉴분감 이렇게 하려고 하는데 킥오프하고 바로...
-
얼버기 4
-
평범한 고2 학생입니다. 고점은 모의고사 100점, 수능 백분위...
-
몸이 으슬으슬함 이거 아프다는 신호인가 ㅈ됐다
-
헉 여신 이다
-
왜일~까
-
접수 마지막날 새벽까지 누워서 각재다 원서 넣던 게 엊그제 같은데
-
면접 가보자 0
끝장내고 와야겠다
-
고등학교 과정과 비슷한게 많나요
-
이 씨
-
어제 10시 반에 자서 지금 일어남 캬하~.~ 밤 샌 보람이 있다 낮밤 잘바꿨네
-
난시발 잠을 못자겠다 요새
-
chapter 0 (06p~) 본 교재에서 다루는 풀이를 위한 비례식의 원리,...
-
작년에 수학 쌩노베 6등급에서.. 그래도 많이 올렸다 생각했는데 더이상 점수가...
-
구매했습니다! won1024 추천In&추천등록인 서로 메가 커피 1만씩 받아요~~
-
"50점 맞던 애가 90점 맞았다"…발칵 뒤집힌 분당 고등학교, 왜 3
경기 성남시 분당구에 있는 한 고등학교에서 중간고사 시험 문제가 유출됐다는 의혹이...
-
박정무 18럼아 13
10,000fc 다 1-2조 먹던데 왜 난 5천억 주냐? 진짜 시발람아..
-
취객처럼 왔다갔다거리길래 시비걸리는 줄 식겁함
-
며칠간 밤에 괴롭혔던 죗값을 치루게 해줌
-
잠이안오네 원래 항상 새벽 3시에 자서 10시에 깨는 ㅂㅅ같은 루틴 유지중이었는데...
-
투표 좀 0
고2 공사 지망 고2 9월 기준 수학 백분위 98 미적분 개념 X 수1수2 시발점...
-
버거킹왔어여 8
-
결승 이틀 전. 0
티원 가보자
-
망한 수면 패턴 16
ㅇ윽
-
3모까지 할거. 0
국어:책읽기,우함시+10개년기출 수학:중학쎈 >시발점 +쎈+풍산자1등급 영어:유기
-
그리고 모니터랑 글카 좀 빨리와라 시발 2주동안 안오노
-
저 맘터도 가여 2
양선지 해장국먹었는데ㅣ 선지에서 냄새나서 선지를 못 건져먹음
-
대건희
사진 잘못 넣어서 재업했어요
221116 3/8은 ㄹㅇ 어떻게 접근해야할지 아직도 모르겠음
확률해석 자체가 4p 킬러 2문제랑 유사할 정도로까지 어렵게 출제할 수 있는 주제라서...
일단은 듣고계시는 강사분의 방법을 따라가시는게 가장 좋을거에요!
백호선생님은 문제를 욕하면서 모든 케이스를 다해보십니다
아아...
팁 드리자면, '분모가 어떻게 나왔을까'에 대해서 가장 먼저 생각해 보시길 바래요!
근데 개인적으로 페이지랑 난이도는 별개라고 생각해서 3페에 있다고 쉬운것도 아니고 4페에 있다고 어려운것도 아닌거같아요 당장 9모 19번 근수축이나 작수 7번만봐도..
4p 킬러라는게 그냥 가장 어려운 2문항을 말하는 거였어요!
별개로 올해 가계도는 무난하게 나오려나요? 다인자 가계도 말고는 딱히 특이점이 안보이네요
그건 저도 잘 모르겠네요ㅠ...
선생님 미쳣네요 분모에 집중하니까 너무 아름답게 풀려버렸습니다 혹시 풀이 봐주실수잇나요
네넹 보내주세요~
하 죄송합니다 다른건 다 아름답게 풀리는데 아무리 연구해도 B>b, Q가 Bb일때 케이스가 빠르게 안없어지고 계속 잡아먹네요 이 풀이는 아닌거같습니다
보내주시면, 피드백 해드릴게요
복대립이 동형인 경우를 빠르게 쳐내면 됩니다
1가지가 같은 경우 + 0가지가 같은 경우의 합으로 생각하면, 1/2 * 1/4 + 1/4 * 1/4이거나 1/2 * 3/4 인데 복대립이 이형접합이면 아래 경우가 안되는걸 빠르게 제거할 수 있어서 B=b라고 빠르게 결정지을 수 있습니다 저는 현장에서 이렇게 풀었어요
Matrix
매트릭스도 결국 다 때려넣는거임 ㅋㅋ
아 사진만봤는데 어지럽네
물지 공부하는데 멘델 추론? 저기 사진 진짜 엄청나네요.... 국어 비문학인줄
생명 선택자분들 진심으로 존경합니다...!
진짜 시1발 이딴 과목 왜 했지ㅋㅋ
뭐가 나와도 ㅈ같네진짜
다인자랑 전좌는 17번 가계도 거의 확정아닌가
방형구는 어떻게 생각하세요?
평소보다 어렵게 나오는 상황까지 준비해놓기는 했는데...
사설보다는 쉽지 않을까요?
아 이 개씨~발새끼들은 난이도 조절을 위하면 근수축을 존나 쉽게내던가 자료해석으로 쳐내고 있노
다인자 첫번쨰 1/0을 1/1로 간주하고 1/0이면 한칸 미는거, 2/0이면 두칸 미는거보다 더 좋은 풀이가 있음? 그냥 이렇게 쓰면 무적인데
그거도 이용하는데 그거보다 훨씬 나아간 단계라고 하면 이해가 되실런지...
그리고, 타형질 연관된 다인자 관련 스킬은 아예 새로 만든겁니다!
수능 잘보셔서 책 내주세요 궁금하네요
다인자 확률 추론은 사설에서 뇌절을 너무 많이 침
근수축을 g로 이해해서 푸는 문제는 근수축의 어느 부분에 관점을 두어서 g를 생성하는건가요?