[Team PPL 칼럼 25호] 나머지 정리와 인수정리요?
게시글 주소: https://www.orbi.kr/00055967315
안녕하세요. Team PPL의 수학팀 김대현입니다.
이번 수학팀 칼럼에서는 수학(상)의 나머지정리와 인수정리에 대해서 다뤄보려고 합니다.
중학교를 마치고 고등학교에 입학하여 학생들이 고등수학을 접했을 때 처음으로 어려움을 느끼는 개념은 어느 부분일까요? 물론 학생들마다 다르겠지만 개인적으로 다항식의 나눗셈에서 나머지정리와 인수정리 파트라고 생각합니다. 쉬운 부분도 있지만 정확하게 이해하기에는 쉽지 않고 내신 킬러 문제로서도 빈번하게 등장하고 있는 아주 중요한 개념이라고 생각됩니다. 그래서 이번 칼럼에서 다항식의 나눗셈의 몫과 나머지의 원리와 이와 관련된 어려운 문제를 풀어보는 시간을 가지려 합니다.
먼저 모든 내용을 간단히 요약하자면 다음과 같습니다.
수의 나눗셈의 원리를 통해 다항식의 나눗셈의 원리를 이해한다.
모든 과목을 통틀어서 새로운 내용을 이해할 때에는 이전에 배웠던 것을 통해 연관지어 생각하는 것이 가장 좋습니다. 어렸을 때 배운 수의 나눗셈의 원리는 무엇이 있었을까요?
다음 예시를 보겠습니다.
1번과 2번을 보았을 때 옳은 것은 무엇일까요? 언뜻 보면 둘 다 맞는 것 같지만 가장 중요한 것이 있습니다. 바로 나머지는 나누는 수보다 작아야 한다는 것입니다. 따라서 1번이 옳은 표현이고 2번은 틀린 표현입니다. 다항식의 나눗셈도 나머지 식의 차수가 나누는 식의 차수보다 작아야 한다는 규칙이 있습니다. 그렇다면 2번에서 진짜 몫과 나머지를 구하려면 어떻게 해야 될까요?
다음 그림과 같이 잘못된 나머지를 나누는 수로 다시 나눠주는 방법을 통해 진짜 나머지와 위의 잘못된 몫과 나머지를 다시 나눠주면서 나오는 몫을 더해줌으로서 진짜 몫을 구할 수 있습니다. 이 원리가 다항식에 어떻게 적용이 되는지 알아보겠습니다.
[2015 고1 6월 모의고사]
위 문제는 나머지정리를 최고난도로 응용한 문제로서 무려 오답률이 90%였던 문제입니다. 여기서 중요한 부분은 (나) 조건과 나머지 R(x)에 관한 조건에서 나누는 식의 인수 부분은 같고 차수만 달라졌다는 것입니다. 이러한 경우 적당한 식의 변형을 통해 나누려는 식과 나누는 식은 같지만 몫과 나머지가 잘못 표현된 식의 형태를 만들 수 있고 위의 원리를 통해 문제를 해결할 수 있는 중요한 조건을 얻을 수 있습니다. 자세한 풀이과정은 밑의 그림 파일로 확인하실 수 있습니다.
이렇게 수의 나눗셈의 원리를 통해 다항식의 나눗셈에 대해 좀 더 이해할 수 있었듯이 앞으로 학생분들께서 수학을 공부하실 때 어려운 내용은 예전에 배웠던 비슷한 내용을 바탕으로 차근차근 이해하는 방향으로 나아가주셨으면 좋겠습니다. 고등 수학뿐만이 아닌 그 이후로 수학을 공부하실 때도 매우 유용한 방법이 될 것입니다.
긴 글 읽어주셔서 감사합니다.
칼럼 제작 |Team PPL 수학연구소 x 수하기
제작 일자 |2022.04.02
Team PPL Insatagram |@ppl_premium
*문의 : 오르비 혹은 인스타그램 DM
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
10모기준 높1 3컷 2 50 47 나왔는데 성균관대 끝자락이라도 가능할까.....
-
얼버기 0
-
아 더프 늦을듯 0
늦어도 입장 시켜줌? 8시 10분까진데 20분 넘을거 같은데.... 아오 똥시치..
-
ㄷ
-
국어 풀 때 지문에 표시를 거의 안 해서 그냥 1지문 풀고 바로 마킹하는 식으로...
-
이퀄싫어
-
오늘 아침은 떡 2
(야한말아님)
-
타임어택 지리네 실모가 젤 중요한거같음
-
아틀란티스타고 이쓴ㄴ 건지 택시 타고 있는 건지 구별이 안 감 눈감으면 아틀란티스 맞는 거 같은데
-
13일은 좀 6
;;;
-
왜 시대는 수능 3일전에 월례를보는거지.. 직전에 감 끌어올리면 오히려 좋은건가...
-
하지만 난 대구광역시교육청에서 주관하는 모의고사를 친다 쿠후후
-
??
-
23 24 전부 수능에서 한 7~8점정도 높네 ㄷㄷ
-
오예스로 바꾸니까 녹는다.. 비싼 이유가 있네
-
간쓸개 이감 세트 시즌 5-4 까지 밖에 못했는데 시간이 너무 없네요 ㅠㅠㅠ 남은게...
-
보이루 0
다들보이루 이제 11월이네요 힘냅시다
-
안치면 후회하려나
-
더프 신청했으면 일요일날 롤드컵 보느라 5시간도 못자고 쳤겠네
-
괜시리 좀 쫄리네요 이번수능 = 병무청이랑 맞다이라서 최근 3년간 중에 리스크가...
-
김민주단들 화이팅!
-
☆☆ 대성 19패스 phil0413 추천 부탁드려요 ㅠㅠ 메가커피 1만원권 같이 받아요! 0
추천 아이디 입력하면 메가커피 1만원권 같이 받을 수 있대요 !! 함께 2026...
-
기다려라 E퀄아 형이 찢어줄게
-
어제 ㄹㅇ 힘들었다
-
결국 승리할 자 2
오늘도 파이팅.
-
파운데이션 -> 킥오프-> 뉴분감 이렇게 하려고 하는데 킥오프하고 바로...
-
얼버기 4
-
평범한 고2 학생입니다. 고점은 모의고사 100점, 수능 백분위...
-
몸이 으슬으슬함 이거 아프다는 신호인가 ㅈ됐다
-
헉 여신 이다
-
왜일~까
-
접수 마지막날 새벽까지 누워서 각재다 원서 넣던 게 엊그제 같은데
-
면접 가보자 0
끝장내고 와야겠다
-
고등학교 과정과 비슷한게 많나요
-
이 씨
-
어제 10시 반에 자서 지금 일어남 캬하~.~ 밤 샌 보람이 있다 낮밤 잘바꿨네
-
난시발 잠을 못자겠다 요새
-
chapter 0 (06p~) 본 교재에서 다루는 풀이를 위한 비례식의 원리,...
-
작년에 수학 쌩노베 6등급에서.. 그래도 많이 올렸다 생각했는데 더이상 점수가...
-
구매했습니다! won1024 추천In&추천등록인 서로 메가 커피 1만씩 받아요~~
-
"50점 맞던 애가 90점 맞았다"…발칵 뒤집힌 분당 고등학교, 왜 3
경기 성남시 분당구에 있는 한 고등학교에서 중간고사 시험 문제가 유출됐다는 의혹이...
-
박정무 18럼아 13
10,000fc 다 1-2조 먹던데 왜 난 5천억 주냐? 진짜 시발람아..
-
취객처럼 왔다갔다거리길래 시비걸리는 줄 식겁함
-
며칠간 밤에 괴롭혔던 죗값을 치루게 해줌
-
잠이안오네 원래 항상 새벽 3시에 자서 10시에 깨는 ㅂㅅ같은 루틴 유지중이었는데...
첫번째 댓글의 주인공이 되어보세요.